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Abstract

This note provides a style guide how to write specifications in Casl.
The guidelines presented here were developed writing the note “Basic
Datatypes in Casl” [4]. Thus they have proven to be useful in practice.
The aim of this note is twofold: on the one hand it documents the
methodology behind the “Basic Datatypes in Casl” [4] and thus helps
to understand the design decision behind them. On the other hand
the here presented “Methodological Guidelines” may be useful as a
starting point for other methodologies.

1ftp://ftp.brics.dk/Projects/CoFI/Notes/M-6/
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Version History

This note revises the note M-6 “Basic Datatypes in Casl”, version 0.1,
March 1999, and version 0.2, July 1999. From version 0.3 on, this note splits
up into two parts: this version 0.7 of note M-6 “Methodological Guidelines”
is devoted to methodological aspects, while note L-12 “Basic Datatypes in
Casl” includes the Basic Datatypes proper.
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Introduction

The basic datatypes of [4] are written obeying the following methodological
guidelines. We formulate them explicitly for several reasons:

1. Many design decisions in the basic datatypes make only sense in con-
text of the guidelines.

2. The guidelines are useful in general for writing specifications in Casl.

3. The guidelines can serve as a starting point for a new set of method-
ological guidelines for other applications.

For the guidelines we adopt the style of the book “A Pattern Language” [1].
Reflecting the marking of [1], all of our guidelines should be marked with
one asterisk. I.e. with the words of [1] we claim that “we have made some
progress”, “but with careful work it will certainly be possible to improve on
the solution” – not astonishing, as these guidelines are the first “style-guide”
how to write specifications in Casl.

If we had pointed out in the guidelines themselves that they are rules of
thumb, we would have had to stress phrasings like “if possible”, “if ade-
quate”, “whenever possible” too much. Thus we formulate them as general
statements. Examples from the basic datatypes illustrate their use. The
discussion of a guideline justifies the underlying design decision and – as
there is no rule without a meaningful exception – shows its limitations.

At certain points, e.g. the naming scheme of axioms, this note differs from
the current version 0.7 of the Basic Datatypes. The next revision of the
Basic Datatypes will take care of all guidelines presented in this note.

We propose two new annotations in this note: %mono and %implied.
Their purpose is explained on pages 16 and 24, respectively. We freely use
them throughout the note.

1 Naming Conventions

Naming schemes are both: tedious and important. Nobody likes to study
them, but without an underlying naming scheme libraries as the “Basic
Datatypes” are unreadable. The following guidelines allow for “typing by
name”. Special care has been taken to design the naming conventions for
axiom labels. Here, the label name describes the role an axiom plays within
the context of a certain specification. Thus, the specifier can document the
intention behind a certain axiom by qualifying its label. These qualifications
might even be useful for Casl tools.
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1.1 General Guidelines 4

1.1 General Guidelines

This section provides guidelines how to build names for arbitrary Casl
identifiers. It also suggests naming conventions for predicates.

1.1.1 First Letter in a Name

Sort names should begin with a capital letter.
Predicate names should begin with a small letter.
Operation names should begin with a small letter.

Specification names should begin with a capital letter.
View names should begin with a capital letter.

Discussion: Only in the specification Boolean we do not respect this
guideline: the reason is that ‘true’, ‘false’, ‘and’ etc. are reserved words in
Casl.

1.1.2 Capitalization in Names, Underscore

Distinct parts of a name should begin with a capital letter.
The underscore should only be used within

view names or axiom labels.

Examples:
spec Char =

. . .
ops ′\000 ′ : Char = chr(0 ); %(slash 000)%
preds isLetter , isDigit , isPrintable : Char

end

view CommutativeField in Rat: . . . end

1.1.3 Prefixes for Predicates

Use the prefix “is/are” or “has/have” for predicate names.

Examples:
spec Bag [sort Elem] =

. . .
pred isEmpty : Bag

0.7



1.2 Naming of Axioms 5

op empty : Bag
. . .

end

spec ExtCommutativeRing [CommutativeRing] given Int =
ExtRing[Ring]

then
preds hasNoZeroDivisors : ();
• hasNoZeroDivisors ⇔

∀x , y : Elem • (x ∗ y = 0 ⇒ x = 0 ∨ y = 0 )

. . .
end

Discussion: This guideline helps to identify predicates by means of speak-
ing names. The specification Bag shows how to avoid confusion with an
operation name. But it can be useful in also in a wider context, c.f. the
specification ExtCommutativeRing.

1.2 Naming of Axioms

The following guidelines provide an extensive naming scheme for axioms
ensuring a clear and intuitive labelling: Unique labels are necessary as refer-
ences in proofs, suggestive names relate the labels closely with the axioms.

1.2.1 Structure of labels

Labels may consist of the components (in this order):
1. the name of the predicate/operation/property, which is defined,
2. a qualification,
3. a sort name, and
4. the (abbreviated) name of the specification they belong to.

Examples:
spec Nat =

. . .
ops 1 : Nat = suc(0 ); %(1 def Nat)%
∀m,n : Nat
• 0 ≤ n %(leq def1 Nat)%
• not(suc(n) ≤ 0 ) %(leq def2 Nat)%
• suc(m) ≤ suc(n) ⇔ m ≤ n %(leq def3 Nat)%
• 0 ! = 1 %(factorial 0)%
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• suc(n)! = suc(n) ∗ n! %(factorial suc)%
then %mono

sort Pos = {p : Nat • p > 0}
op 1 : Pos = suc(0 ); %(1 def Pos)%

end

spec ReflexiveRelation =
Relation

then
∀x : Elem
• x ∼ x %(refl)%

end

Discussion: The above part of the specification Nat shows axiom labels
of different form: %(leq def1 Nat)% consists of the predicate name ‘leq’, a
qualification ‘def’, and the specification name ‘Nat’; here, the specification
name has been added as other specifications like the integers certainly will
have their own predicate ‘leq’ with their own defining axioms. %(facto-
rial 0)% is built from the operation name ‘factorial’ and the qualification
‘0’; in this case the operation factorial is expected to be related only with
the naturals. Finally, the labels %(1 def Nat)% and %(1 def Pos)% show
disambiguation by the sort names ‘Nat’ and ‘Pos’, resp.

ReflexiveRelation gives an example of an axiom’s label denoting an
abstract property.

Reference: See Qualifications, subsection 1.2.3, Labels for Overloaded
Definitions, subsection 1.2.7, and Labels for Universal Axioms, sub-
section 1.2.9.

1.2.2 Capitalization in Labels, Underscore

The guideline concerning capitalization of the first letter of
sort names, predicate names, operation names,
specification names holds within labels as well.

The components of a label are separated by an underscore “ ”.

Reference: See First Letter in a Name, subsection 1.1.1, and Capi-
talization in Names, Underscore, subsection 1.1.2.
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1.2.3 Qualifications

An axiom qualification is of the form
“ def” (cf. subsection 1.2.4),

a constructor name (cf. subsection 1.2.5),
a number (cf. subsection 1.2.6),

“ partial”, “ total” (cf. subsection 1.2.7), or
“ dom” (cf. subsection 1.2.8).

1.2.4 Labels for Definitional Axioms

All labels on axioms defining an operation or predicate
should have the qualification “def”.

Example:
spec Nat =

. . .
op min : Nat ×Nat → Nat
∀m,n : Nat
• min(m,n) = m when m ≤ n else n %(min def Nat)%

end

1.2.5 Labels for Inductive Definitions

For inductive definitions,
the names of the respective constructors

should be used as qualifications instead of “def”.

Example for constructors:
spec Nat =

. . .
op + : Nat ×Nat → Nat
∀m,n : Nat
• 0 + m = m %(add 0 Nat)%
• suc(n) + m = suc(n + m) %(add suc Nat)%

end

1.2.6 Labels for Case Distinctions

Case distinctions should just be numbered,
if there is no better name.
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Example:
spec Boolean =

. . .
ops And : Boolean × Boolean → Boolean
. . .
• False And False = False %(And def1)%
• False And True = False %(And def2)%

. . .
end

1.2.7 Labels for Overloaded Definitions

Disambiguation of overloaded names should be done by
sort names and/or

the qualifications “total” and “partial”.

Example for Sort Names:
spec Nat =

. . .
op min : Nat ×Nat → Nat
∀m,n : Nat
• min(m,n) = m when m ≤ n else n %(min def Nat)%

end

spec Int =
Nat

then
. . .
op min : Int × Int → Int
∀x , y : Int
• min(x , y) = x when x ≤ y else y %(min def Int)%

end

Example for ‘total’ and ‘partial’:
spec Nat =

. . .
ops div : Nat ×Nat →? Nat ;

div : Nat × Pos → Nat ;
∀m,n, s : Nat ; p : Pos
• m div n = s ⇔

(∃r : Nat • m = n ∗ s + r ∧ 0 ≤ r ∧ r < n)
%(div partial Nat)%

then %implies
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∀m,n, s : Nat ; p : Pos
• m div p = s ⇔

(∃r : Nat • m = p ∗ s + r ∧ 0 ≤ r ∧ r < p)
%(div total Nat)%

end

1.2.8 Labels for Definedness Axioms

Definedness formulas for partial functions should be
named by the qualification “dom”.

spec Nat =
. . .
∀m,n : Nat
• def (m div n) ⇔ ¬n = 0 %(div dom Nat)%

end

1.2.9 Labels for Universal Axioms

Add the name of the specification,
if an axiom can belong to many datatypes.

Example:
spec DefineBooleanAlgebra =

. . .
∀x , y , z : Elem
• x u (y t z ) = (x u y) t (x u z ) %(distr1 DefBA)%
• x t (y u z ) = (x t y) u (x t z ) %(distr2 DefBA)%

end

Discussion: Theorem provers as e.g. Isabelle require unique labels for
axioms. For some laws it is not possible do disambiguate the labels by
adding the sort: the distributive laws hold e.g. in a boolean algebra and in
a ring, and both specifications have the sort “Elem”.

1.2.10 Generated labels

Do not use labels starting with “ga ”,
since these are be generated by the Casl tool set.
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Discussion: The Casl tool set generates all the axioms implicitly ex-
pressed by specifications, such as associativity of operations attributed with
assoc, or injectivity of constructors for free types. Since the syntax of
labels is arbitrary, there is no chance to generate labels that the user cannot
input.

2 Basic Specifications

Being the elementary building blocks of Casl specifications, basic specifica-
tion should be carefully designed. In order to obain readability, the different
kinds of Casl basic items should be arranged in a prescribed order. Signa-
tures should be both: ‘naturally’ small and ‘complete’. The combination of
datatypes and subsorting needs to be dealt with. Finally, there are guide-
lines how to characterize the domain of partial functions.

2.1 Ordering Elements

Here we discuss how to arrange the different items of a basic specification –
in general and for axioms. We also provide a guideline concerning variable
declarations.

2.1.1 Order in a Basic Specification

Arrange a basic specification in the order
types . . . sorts . . . preds . . . ops . . . ∀ . . . .

Example:
spec Char =
. . .
then

sort Char
preds isLetter , isDigit , isPrintable : Char
ops chr : Nat →? Char ;

ord : Char → Nat ;
∀n : Nat ; c : Char
• . . .

end

Discussion: In the above guideline the keyword ‘types’ stands for datatype
declarations, free datatye declarations, as well as sort generation.
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2.1 Ordering Elements 11

This style allows to keep overview of specifications: There is a specific place
for all kinds of information that might arise in a basic specification. Further-
more, collecting the signature elements in one place allows for ‘blind’ use –
assuming that the specifiers got the axioms right, one is only interested in
how rich the signature is which a specification provides. One might argue
that the separation of the declaration of signature elements from the axioms
describing their properties is a drawback of this style. But this does not be-
come a serious problem if the axioms are ordered as described in guideline
2.1.2 and guideline 4.1.1 on structuring specifications in small pieces of code
is obeyed.

Reference: See also Order of Axioms, subsection 2.1.2, and Size of
Single Specifications, subsection 4.1.1.

2.1.2 Order of Axioms

Arrange the axioms in a local variable declaration in an order
corresponding to the declaration of the preds and ops., resp.

spec Nat =
. . .
ops ! : Nat → Nat ;

+ , ∗ , ˆ ,
min,max : Nat ×Nat → Nat ;
. . .

∀m,n, r : Nat ; p : Pos
• 0 ! = 1 %(factorial 0)%
• suc(n)! = suc(n) ∗ n! %(factorial suc)%
• 0 + m = m %(add 0 Nat)%
• suc(n) + m = suc(n + m) %(add suc Nat)%

. . .
end

2.1.3 Variable Declarations

Avoid global variable declarations.

Discussion: To avoid

• mismatch between the use of a variable in a formula and its declaration,
and
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• confusion for the reader of a specification,

a variable should be declared as local as possible. We reflect this guideline
in the basic datatypes by using only local variable declarations.

2.2 Minimal Signatures

Often, there are many possibilities to specify the profile of a certain opera-
tion: Restricting the operation’s arguments to suitable subsorts can lead to
a more specific result or totalize a partial operation. We present guidelines
how to select profiles.

2.2.1 Minimal Coverage

Provide a minimal coverage of the possible profiles of an operation.

Example:
spec Nat =

. . .
op + : Nat ∗Nat → Nat
. . .
op 1 : Nat = suc(0 ); %(1 def Nat)%
. . .
ops ∗ : Nat ∗Nat → Nat ,

comm, assoc, unit 1 ; %implied
then %mono

sort Pos = {p : Nat • p > 0}
ops 1 : Pos = suc(0 ); %(1 def Pos)%

∗ : Pos ∗ Pos → Pos;
+ : Pos ∗Nat → Pos;
+ : Nat ∗ Pos → Pos;

suc : Nat → Pos. . .
end

Discussion: This guideline aims at small signatures allowing to infer as
much type information as possible (‘minimal’), i.e. for a given set of argu-
ments the minimal target sort is determined – which also are general (‘cov-
erage’), i.e. no argument type is forgotten. Given an operation with several
possible profiles the selection of the profiles provided by the specification
should follow the two-step procedure below:
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1. For any target sort of an operation take the most general argument
profile (apply the subsort relation componentwise).

2. Optimize this set of profiles: if there are profiles with identical argu-
ment sorts and targets in subsort relation, take just the profile with
minimal target.

For instance, given the subsort relation Pos < Nat , the operation + on
the naturals has

(i) Nat ×Nat → Nat ,

(ii) Pos ×Nat → Pos,

(iii) Nat × Pos → Pos, and

(iv) Pos × Pos → Pos

as possible profiles. Step 1. of the above procedure selects the profile (i) for
the target sort Nat, and profiles (ii) and (iii) for the target sort Pos. There
is no optimization possible according to step 2.

As another example consider the constant ‘1’. Following step 1. we obtain
the profiles op 1 : Nat and op 1 : Pos . Applying step 2. yields that only
the profile op 1 : Pos is necessary for minimal coverage. In spite of this
the above specification Nat declares it also as op 1 : Nat . The constant
‘1’ is needed before the subsort Pos is introduced, e.g. to formulate that ‘1’
is the unit of multiplication.

2.2.2 Partial and Total Functions

Develop ‘natural’ signatures incorporating either
the total or the partial variant of an operation.

Example: Prefer one of these specifcations

spec ListPartial [sort Elem] given Nat =
. . .
ops first : List [Elem] →? Elem;
. . .

end

spec ListTotal [sort Elem] given Nat =
. . .
ops first : NeList [Elem] → Elem;
. . .

end
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2.3 Predicative subsorts 14

over the following:

spec ListBoth [sort Elem] given Nat =
. . .
ops first : List [Elem] →? Elem;

first : NeList [Elem] → Elem. . .
end

Discussion The operation first can be specified as a partial operation on
general lists. Introducing nonempty lists as a subsort allows to totalize this
operation. Having both variants in one specification leads to too complicated
signatures, as ususally there are several operations which can be totalized
on suitable choosen subsorts. I.e. the signature grows in both components:
operations and sorts.

2.3 Predicative subsorts

Define subsorts of datatypes afterwards predicatively,
not in the datatype definition itself.

Example: Prefer this style

spec GenerateNat =
free type Nat ::= 0 | suc(pre :?Nat)
sort Pos = {n : Nat • ¬n = 0}

end

over the following:

spec GenerateNat =
free types Nat ::= 0 | sort Pos;

Pos ::= suc(pre : Nat)
end

Discussion: The first specification directly leads to the desired induction
principle, which has to be proved rather clumsily with the second specifica-
tion.

2.4 Domains of Partial Functions

If possible, the domain of a partial function should be characterized within
a specification. Here we discuss how this can be achieved in a uniform way
without running into consistency problems.
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2.4 Domains of Partial Functions 15

2.4.1 Implicit Characterization

Specify domains of partial functions implicitly by strong equations.
Add explicit characterizations as intended consequences.

Example:
spec Nat =
. . .

ops div : Nat ×Nat →? Nat ;
∀m,n, s : Nat
• m div n = s ⇔ (∃r : Nat • m = n ∗ s + r ∧ 0 ≤ r ∧ r < n)

%(div partial Nat)%
then %implies
∀m,n : Nat
• def (m div n) ⇔ ¬(n = 0 ) %(div dom Nat)%

end

Discussion: The definition of a partial function by a strong equation re-
sults in an implicit characterization of its domain. The definedness formula
in the intended consequences provides useful information (if only for docu-
mentary purposes) and can be used for an additional correctness test of the
specification.

2.4.2 Explicit Characterization

If – as an exception – you specify domains explicitly,
guard the axioms with the definedness assertion.

Example: (from the CoFI-Note M-7 [3])

spec DefineBasicReal =
Rat

then
sort Rat < Real
op / : Rat × Rat →? Rat

. . .
then

%% Sequences and sequence combinators:
sort Sequence
pred nonZero : Real
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ops ! : Sequence ×Nat → Real ;
%% s!i denotes the i th element of a sequence s of real numbers

/ : Sequence × Sequence →? Sequence;
%% divide sequences componentwise

∀n : Nat ; r : Real ; a, b : Sequence
• nonZero(r) ⇔ ¬r = 0 %(nonZero def)%
• def (a/b) ⇔ ∀k : Nat • nonZero(b!k) %(div dom Seq)%
• (a/b)!n = ((a!n)/(b!n)) if def (a/b) %(div def Seq)%

end

Discussion: In this example, adding the equation

(a/b)!n = ((a!n)/(b!n))

instead of the axiom %(div Seq def)% would lead to an inconsistency. This
is because (a!n)/(b!n) may be defined or undefined, depending on n, while
the definedness of a/b is independent of n. Thus, we are forced to specify
the domain of / explicitly. (In higher-order CASL, using the description
operator, an implicit specification is possible.)

3 Requirement versus Design Specifications

The guidelines presented in this section depend on the type of a specifica-
tion. We distinguish between requirement and design specifications in the
following sense: requirement specifications are loose, i.e. the specifier con-
ciously leaves certain properties unspecified. Thus, the specified datatypes
are polymorphic and, as a consequence, the specification is ‘incomplete’:
given a property in terms of a formula, neither this formula nor its negation
might hold for the whole model class. In contrast to this, design specifica-
tions are complete: all design decision have been taken and the specified
model class is monomorphic.

For parametrized specifications, this pictures becomes more involved. In
general, Casl specification definitions are of the form

spec SN [SP1 ] . . . [SPn ] given SP”1 , . . . , SP”m =
SP

end

The annotation %mono shall express that the extension of

{SP”1 and . . . and SP”m } then {SP1 and . . . and SPn }

to the specification
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3.1 Paramters and Imports 17

{SP”1 and . . . and SP”m } then {SP1 and . . . and SPn }
then

Sp

is unique up to isomorphism. In this case, we consider the specification SN
as a design specification, otherwise as a requirement specification.

With these definitions, we obtain as guidelines concerning instantiations:

1. Instantiating the parameters of a requirement specification yields a
requirement specification.

2. Instantiating the parameters of a design specification with design spec-
ifications yields a design specification.

3. Instantiating the parameters of a design specification with requirement
specifications, which stem from a foramal parameter, yields a design
specification. Otherwise, one obtains a requirement specification.

3.1 Paramters and Imports

3.1.1 Classification of Parameters

In a specification definition
a parameter is expected to be a requirement specification.

Discussion: As the parameter of a specification definition allows for in-
stantiation, it should be a polymorphic datatype.

3.1.2 Classification of Imports

The import collects those parts of a specification
whose design is already been fixed in a named design specification.

Examples:
spec List [sort Elem] given Nat = %mono

GenerateList [sort Elem]
then

. . .
end

spec MyRing [Ring] given Int =
ExtRing [Ring]

then
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op /? : Elem ∗ Elem →? Elem;
∀x , y , z : Elem
• (x/?y = z ) ⇒ x = z ∗ y %(divide NonZero)%

end

Discussion: Following the above terminology, List is a design specifica-
tion: for any kind of elements the list structure is fixed up to isomorphism.
The natural numbers – used e.g. to determine the lenght of a list – are
specified elsewhere and are therefore imported.

On the other hand, MyRing (not part of the Basic Datatypes) is a require-
ment specification: if the partial operation /? is defined, it shall be the
inverse of the usual ring multiplication. The integers are used for the power
operation within ExtRing.

Collecting the natural numbers and the integers, resp., in the import clause
indicates that

• their design is already fixed and that

• this is done elsewhere.

Furthermore, this style allows for the instantiation of the

• parameter with the import,

i.e. the parameter sort Elem can be instantiated with Nat, and the param-
eter Ring can be instantiated with Int. It avoids non-wellformed specifica-
tions due to sharing symbols between actual parameter and body which do
not belong to the formal parameter or import, c.f. section 4.3 Parameter-
ized specifications.

3.2 Gathering Requirements

3.2.1 Use of the Operation Attributes [Requirement]

Use operation attributes only in requirement specifications.

Example:
spec Container [sort Elem] =
sort Container
ops empty : Container ;

{ } : Elem → Container ;
+ + : Container × Container → Container , assoc

end
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Discussion: The concatenation of containers shall be associative, while it
is left open if containers are later implemented as sets, lists, bags, etc.

In contrast, in a design specification, attributes should follow from the op-
erational inductive definitions, while requiring these attributes would com-
plicate consistency proofs. This means, in order to establish properties like
assoc, comm, idem, and unit for an operator (or an operator and a constant,
resp.) defined in an operational manner specify a view, see Use of Views,
subsection 4.1.6.

3.2.2 Observers [Requirement]

Use observers to implicitely specify operations.

Example:
spec Sorting [TotalOrder] =
{

List [sort Elem]

then
preds is ordered : List [Elem];

permutation : List [Elem]× List [Elem];

forall x , y : Elem;
L,L1 ,L2 : List [Elem]

• is ordered([])
• is ordered([x ])
• is ordered(x :: (y :: L)) ⇔ x ≤ y ∧ is ordered(y :: L)
• permutation(L1 ,L2 ) ⇔ (∀ x : Elem • x ∈ L1 ⇔ x ∈ L2 )

then

op sorter : List [Elem] → List [Elem];
forall L : List [Elem]
• is ordered(sorter(L))
• permutation(L, sorter(L))

} hide is ordered , permutation
end

Discussion: Observers can be used to define properties of functions or
predicates in an abstract way – separating requirements from design deci-
sions. In the above example, a sorting function sorter is uniquely character-
ized in terms of the observers is ordered and permutation. Thus, there is no
need to specify sorter following the recursion scheme of a sorting algorithm
like bubblesort or quicksort.
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3.3 Datatypes 20

3.3 Datatypes

3.3.1 Definitions on Generated Datatypes [Design]

Use inductive definitions by cases in the context of generated datatypes:
Define predicates by equivalences.

Define operations by strong equations.
Both may be guarded by disjoint and jointly exhaustive conditions.

Example:
spec FiniteSet [sort Elem] given Nat =

. . .
∀x : Elem;S ,T ,U : FinSet [Elem]
• {} ⊆ S %(subset empty)%
• set(x ) ⊆ S ⇔ x ε S %(subset set)%
• (S ∪ T ) ⊆ U ⇔ S ⊆ U ∧ T ⊆ U %(subset union)%

• {} ∩ S = {} %(intersect empty)%
• set(x ) ∩ S = {} if ¬ x ε S %(intersect set1)%
• set(x ) ∩ S = set(x ) if x ε S %(intersect set2)%
• (S ∪ T ) ∩U = (S ∩U ) ∪ (T ∩U ) %(intersect union)%

end

Discussion: It can be shown that following these principles, for free types
one automatically gets a definitional extension. In the case of generated
types, well-definedness w.r.t. the specified equality must be shown.

3.4 Supersorts

3.4.1 Extension to a Supersort [Requirement]

The extension of operations and predicates to a supersort
can be shortened by adding abstract properties.

Example:
spec CompactIntRequirement =

Int
then

free types PosInf ::= infinity ;
NegInf ::= − (PosInf );
CompactInt ::= sort Int | sort PosInf | sort NegInf ;
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pred ≤ : CompactInt × CompactInt
∀n : Int
• −infinity ≤ n %(order infinity def1)%
• n ≤ infinity %(order infinity def2)%

then
TotalOrder with Elem 7→ CompactInt
. . .

end

Discussion: In the above example, a supersort CompactInt of sort Int is
introduced, which consists besides the integers also of the values infinity
and −infinity. The elements of CompactInt are required to be totally or-
dered by ≤ : CompactInt × CompactInt , such that −infinity ≤ n ≤
infinity, n ∈ Int, holds. These requirements are captured directly by the
above specification. See section 3.4.2 for an equivalent, but less intuitive
specification.

The problematic point here is that the specification of abstract properties on
the new supersort might impose consequences on the already defined model
class. Thus, contradictions easily arise and, consequently, consistency proofs
are required. For instance, in our example the requirement

TotalOrder with Elem 7→ CompactInt

enforces that also ≤ : Int × Int is a total order – which is luckily the
case.

3.4.2 Extension to a Supersort [Design]

Specify the extension of operations and predicates to a supersort
only for those values that are not in the subsort.

Example:
spec CompactIntDesign =

Int
then

free types PosInf ::= infinity ;
NegInf ::= − (PosInf );
CompactInt ::= sort Int | sort PosInf | sort NegInf ;

pred ≤ : CompactInt × CompactInt
∀n : Int
• n ≤ infinity %(order def1)%
• −infinity ≤ n %(order def2)%
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• ¬n ≤ −infinity %(order def3)%
• ¬infinity ≤ n %(order def4)%
• −infinity ≤ infinity %(order def5)%
• ¬infinity ≤ −infinity %(order def6)%

. . .
end

Discussion: In the above example, a supersort CompactInt of sort Int is
introduced, which consists besides the integers also of the values infinity
and −infinity. The order ≤ : Int × Int is extended to the supersort
CompactInt by the axioms %(order def1)%, . . . , %(order def6)%.

Compared to the requirement specification CompactIntRequirement of
section 3.4.1, CompactIntDesign is

1. longer, and

2. it needs a proof that ≤ : CompactInt × CompactInt is a total
order.

But there are less consistency problems: As the axioms concern only the
new predicate, the design specification is consistent if the specification Int is
consistent and there is no contradiction between the new introduced axioms.
I.e., the already finished design of Int is not influenced by the extension to
the supersort.

4 Structured Specifications

Larger specifications should be structured into smaller parts in order to in-
crease readability and also re-use. Casl has a number of language constructs
allowing to write specifications in a structured way; we here demonstrate and
explain their use. Parameterized and free specifications (and how to avoid
some pitfalls when using them) are explained in separate subsections.

4.1 Dividing Specifications into Parts

4.1.1 Size of Single Specifications

Structure specifications in
small and easlily understandable subspecifications.
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4.1.2 Separate Sort Generation

Treat sort generation in GenerateDatatypeX.
Deal with additive aspects in DatatypeX.

Example:
spec GenerateFiniteSet [sort Elem] =

generated type FinSet [Elem] ::= {} | + (Elem;FinSet [Elem]);
then %def

pred ε : Elem ∗ FinSet [Elem];
∀x , y : Elem;M ,N : FinSet [Elem]
• ¬ xε{}
• xε(y + M ) ⇔ x = y ∨ xεM

then
∀M ,N : FinSet [Elem]
• M = N ⇔ (∀x : Elem • xεM ⇔ xεN )

end

spec FiniteSet [Elem with sort Elem] =
GenerateFiniteSet [Elem]

then
. . .

end

Discussion: As generation of sorts is a rather subtle part of a specifica-
tion, this style hopefully avoids confusion. Furthermore, this style allows
to attach a representation theorem for the generated sorts to the specifica-
tion GenerateX – see also Add System of Representatives, subsection
4.1.3.

4.1.3 Add System of Representatives

Add your intended system of representatives
as a comment in GenerateDatatypeX.

Example:
spec GenerateFiniteSet [sort Elem] =

generated type FinSet [Elem] ::= {} | + (Elem;FinSet [Elem]);
then %def

pred ε : Elem ∗ FinSet [Elem];
∀x , y : Elem;M ,N : FinSet [Elem]
• ¬ xε{}
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• xε(y + M ) ⇔ x = y ∨ xεM
then
∀M ,N : FinSet [Elem]
• M = N ⇔ (∀x : Elem • xεM ⇔ xεN )

%% intended system of representatives:
%% x1 + . . . + xn + {},
%% where n ≥ 0 , xi ∈ Elem, xi 6= xj for i 6= j , and
%% x1 < x2 < . . . < xn (< is an arbitrary order on Elem)
end

Discussion: The system of representatives gives a canonical model. Hence,
it increases the intuitive understanding of the specification, since readers can
think about the specification in terms of the canonical model.

4.1.4 Qualify Extensions

If possible, qualify extensions by the semantical annotations
“implied”, “def”, “mono”, or “cons”.

Example:
spec GenerateNat = %mono

free type Nat ::= 0 | suc(pre :?Nat)
then %def

op + : Nat ×Nat
∀m,n : Nat
• 0 + m = m %(add 0 Nat)%
• suc(n) + m = suc(n + m) %(add suc Nat)%

then %implies
op + : Nat ×Nat → Nat , assoc, comm, unit 0
∀m,n : Nat
• def pre(n) ⇔ not n = 0 %(dom pre Nat)%
• def pre(n) ⇒ pre(n) + m = pre(n + m) %(add pre Nat)%

then %cons
op bound : Nat

end

Use “implied” instead of “implies” to state intended consequences of the
specification closely belonging to the specification itself.

Example: Using %implied, the above example can be reformulated as
follows.
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spec GenerateNat = %mono
free type Nat ::= 0 | suc(pre :?Nat)
∀n : Nat
• def pre(n) ⇔ not n = 0 %(dom pre Nat)% %implied

then %def
op + : Nat ×Nat → Nat ,

assoc, comm, unit 0 %implied
∀m,n : Nat
• 0 + m = m %(add 0 Nat)%
• suc(n) + m = suc(n + m) %(add suc Nat)%

then %implies
∀m,n : Nat
• def pre(n) ⇒ pre(n) + m = pre(n + m) %(add pre Nat)%

then %cons
op bound : Nat

end

Here, %implied means that the formulas induced by the annotated con-
struct shall follow from the enclosing basic specification (plus the local en-
vironment).

4.1.5 Abstract Definitional Extension

Try to minimize requirements in DatatypeX.
Add derived concepts later as a definitional extension in

ExtDatatypeX[DatatypeX].
Provide a non parametrized version of ExtDatatypeX as

RichDatatypeX.

Example:
spec DefineBooleanAlgebra =

sort Elem
ops 0 : Elem;

1 : Elem;
u : Elem × Elem → Elem,

assoc, comm, unit 1 ;
t : Elem × Elem → Elem,

assoc, comm, unit 0 ;. . .
end

spec BooleanAlgebra
[DefineBooleanAlgebra with sort Elem, ops 0 , 1 , u , t ] =

%def
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SigOrder with preds ≤ , ≥ , < , >
then
∀x , y : Elem
%% induced partial order:
• %(BoolAlg leq def] x ≤ y ⇔ x u y = x

end

Discussion: This style reduces the proof obligations induced by a view
from DefineDatatypeX to another specification. In the above example
this could be the view

view DefineBooleanAlgebra in FinitePowerSet
[FiniteSet[Elem]] [op X : FinSet [Elem]]:

DefineBooleanAlgebra to
FinitePowerSet [FiniteSet[Elem]] [op X : FinSet [Elem]] =

sort Elem 7→ FinitePowerSet [X ],
ops 0 7→ {},

1 7→ X ,
u 7→ ∩ ,
t 7→ ∪

end

Obviously this view deals only with the operations 0, 1,u,t, but the predi-
cate ≤ is not part of it. In spite of this, one automatically obtains the predi-
cate ≤ in a specification SpecX by instantiating the specification Boolean-
Algebra under the view DefineBooleanAlgebra in FinitePowerSet,
i.e.

spec SpecX=
. . .

then
BooleanAlgebra

[view DefineBooleanAlgebra in FinitePowerSet]
. . .

end

Furthermore, one obtains a correctness check for the specified datatype:
there is a proof obligation that the derived concepts that are defined in
DatatypeX[DefineDatatypeX] are definitional extensions of the specifi-
cation DefineDatatypeX.

Finally, using the proposed separation, it is possible to specify a certain
category of models with DefineDatatypeX, which need not coincide with
the category of reducts of DatatypeX[DefineDatatypeX] because the
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latter might introduce additional operations and predicates that decrease
the number of homomorphisms.

4.1.6 Use of Views

Use a view SP1 in Sp2 to separate
the definition of predicates and operations in Sp2 (design specification)

from
the specification of their desired properties in Sp1 (requirement

specification).

spec Nat =
. . .
∀m,n : Nat
• 0 + m = m %(add Nat 0 )%
• suc(n) + m = suc(n + m) %(add Nat suc)%

end

view CommutativeMonoid in Nat Add:
CommutativeMonoid to Nat

=
sort Elem 7→ Nat ,
ops e 7→ 0 ,

∗ 7→ +
end

Discussion: This style has advantages from different points of view:

• Methodologically it separates the definition of an operator/predicate
from the specification of its desired properties. Thus, it avoids confu-
sion for the specifier.

• Concerning correctness it adds a proof obligation to the specification.
Discharging this obligation (with a theorem proving tool) increases the
trust in the correctness of the specifications.

• It enables efficient use of theorems and their proofs: If one proves a
theorem in the above specification CommutativeMonoid it auto-
matically holds in Nat as well as in all other specifications related by
a view with CommutativeMonoid.

Concerning the tools this style means that they should transfer theorems as
well as operation attributes via a view.
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Use a generic view,
if the target of the view is a parameterized specification.

Example:
view Monoid in List[Elem] :

Monoid to List[Elem]
=

sort Elem 7→ List [Elem],
ops 0 7→ [],

+ 7→ ++
end

4.2 Use of structuring constructs

4.2.1 Union [Requirement]

In requirement specifications,
unions are used to combine arbitrary properties.

Example:
spec CommutativeGroup =

CommutativeMonoid and Group
end

4.2.2 Union [Design]

In design specifications,
the arguments of a union should have disjoint signatures.

Example:
spec ListWithNat[Elem] =

Nat and
List[Elem]

end

Discussion: Unions can introduce new inconsistencies through interaction
of properties of the united specifications. While this risk has to be taken
in requirement specifications (which should be close to the problem descrip-
tion), for design specifications, this risk should be avoided: with disjoint
signatures, the consistency of the united specification follows from that of
the components.
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4.2.3 Union versus Extension

If two specifications are independent,
combine them by union and not by extension.

spec TreeWithInt[Elem] =
Int and
Tree[Elem]

end

Discussion: The “and” clearly indicates the indepdence of the specifica-
tions.

4.2.4 Renaming

Use renaming to give more mnemonic names
when using a specification in a new context.

Example:
spec String=

List[Elem] with List [Elem] 7→ String
end

Use renaming to avoid name clashes.

Example:
spec Field =

Group and
Group with Elem 7→ NonZeroElem, 0 7→ 1 ,+ 7→ ∗
. . .

end

Use redundant renamings to indicate origin of symbols
(but only rarely, i.e. when really helpful).

Example:
spec Field =

Group with 0 ,+
and

Group with Elem 7→ NonZeroElem, 0 7→ 1 ,+ 7→ ∗
. . .

end
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4.2.5 Hiding

Use hiding to generate export signatures,
i.e. hiding auxiliary symbols that are only locally relevant.

Example:
spec Sorter =

List[Elem]
then

ops sorter : List [Elem] → List [Elem]
insert : Elem × List [Elem] → List [Elem]

. . .

hide insert
end

4.2.6 Local specifications

Alternatively, declare auxiliary symbols to be local.

Example:
spec Sorter =

List[Elem]
then local

op insert : Elem × List [Elem] → List [Elem]
within
op sorter : List [Elem] → List [Elem]

. . .
end

4.2.7 Closed specifications

Avoid the use of closed specifications, if possible.

Example: Instead of

spec ConstructField =
CommutativeRing

then • not e = 0
sort NonZeroElem = {x : Elem • not x = 0}

then closed
{ Group with sort Elem 7→ NonZeroElem, ops e, ∗ }

end
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write

spec ConstructField =
CommutativeRing

then • not e = 0
sort NonZeroElem = {x : Elem • not x = 0}

and { Group with sort Elem 7→ NonZeroElem, ops e, ∗ }
end

Discussion: In the first specification, the “closed” is crucial, since without
it, the renaming of Elem into NonZeroElem also would affect Commuta-
tiveRing, which is neither legal nor wanted. The “closed” ensures that
CommutativeRing is not visible in the renaming of Group — the same
effect is achieved with the “and” in the second specification.

Use “closed” to avoid that
a formal parameter gets into the scope of a renaming.

Example:
spec ListRequirement[sort Elem] =

closed { Monoid with sort Elem 7→ List [Elem],
ops e 7→ [], ∗ 7→ + + }

then
op :: : Elem × List [Elem] → List [Elem]
∀x : Elem;L : List [Elem]
• x :: L = (x :: []) + +L

end

Discussion: Here, the “closed” is necessary to avoid the renaming to affect
also the formal paramter sort Elem.

4.2.8 Qualify in maps and symbol lists

Qualify symbol maps / symbol lists
with the keywords sort, pred, op.

Example:
view CommutativeMonoid in Nat Add:

CommutativeMonoid to Nat
=

sort Elem 7→ Nat ,
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ops e 7→ 0 ,
∗ 7→ +

end

4.3 Parameterized specifications

Split the parameters of a parameterized specification
into minimal useful pieces.

Discussion: Implicit instantiation of a parameterized specification, e.g.
List[sort Nat ], can be used only if there are not too many symbols in the
parameter (otherwise, the fitting map will not be unique). By splitting
parameters, one can achieve to have only a small number of symbols in each
parameter.

Example:
spec Pair[sort Elem1 ][sort Elem2 ] =

. . .
end

In the body of a parameterized specification,
use compound identifiers for new sorts,

as well as for new operation and predicate symbols
acting solely on parameter sorts.

Discussion: Compound identifiers help disambiguating symbols that come
from different instantiations of one and the same parameterized specifica-
tion. By the above guideline, it suffices in most cases to ensure that just
the new sorts in the body are compound identifiers. Then, operations and
predicates on the new sorts are automatically disambiguated by their pro-
files. Hence, only for operations and predicates acting solely on parameter
sorts, compound identifiers need to be used.

Example:
spec List[Elem] =

sort List [Elem]
ops [] : List [Elem];

:: : Elem × List [Elem] → List [Elem]. . .
end

Prefer instantiation to renaming, if possible.
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Discussion: The effect of implicit renaming of components of compound
identifiers can only be achieved via fitting maps in an instantiation of a
parameterized specification, not via a renaming.

Instantiate with the formal parameter, if you want to stay generic.

Example:
spec CommutativeMonoid[Elem] =

Monoid[Elem]
then
∀x , y : Elem • x + y = y + x

end

If in the body of a parameterized specification, another parameterized
specification is instantiated twice (in ways depending differently on the

parameter), the results of the instantiations should be renamed.

Examples: Consider the following specifications ignoring the above guide-
line:

spec Set [sort Elem] = sort Set [Elem] end

spec FiniteMap[sort S ][sort T ] =
Set[sort S ]

and
Set[sort T ]

then
sort FiniteMap[S ,T ]

end

spec Sp = FiniteMap[sort S ][sort S ] end

leads to the following error message

Fitting morphism leads to forbidden identifications
{ (sort Set[S] , sort Set[T]) }

indicating that the result of the instantiation FiniteMap[sort S ][sort S ]
is not a pushout.

When obeying the guideline, everything works fine:

spec Set [sort Elem] = sort Set [Elem] end

spec FiniteMap[sort S ][sort T ] =
Set[sort S ] with Set [S ] 7→ SourceSet [S ]
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and
Set[sort T ] with Set [T ] 7→ TargetSet [T ]

then
sort FiniteMap[S ,T ]

end

spec Sp = FiniteMap[sort S ][sort S ] end

4.4 Structured Free Extension

Use structured free specifications to specify predicates inductively.

Example I
spec BinaryRelation =

sort Elem
pred ∼ : Elem × Elem

end

spec TransitiveClosure [BinaryRelation] =
free
{ pred ∼∗ : Elem × Elem

∀x , y , z : Elem
• x ∼ y ⇒ x ∼∗ y
• x ∼∗ y ∧ y ∼∗ z ⇒ x ∼∗ z

}
end

In this specification, the use of a structured free extension cannot be avoided.

Example II: Avoiding inductive specification of predicates.

spec Nat WithStructFreeExt =
GenerateNat

then
free
{ pred ≤ : Nat ×Nat

∀m,n : Nat
• 0 ≤ n %(leq def free1 Nat)%
• suc(m) ≤ suc(n) ⇒ m ≤ n %(leq def free2 Nat)%

}
end
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spec Nat =
GenerateNat

then
pred ≤ : Nat ×Nat
∀m,n : Nat
• 0 ≤ n %(leq def1 Nat)%
• suc(m) ≤ suc(n) ⇔ m ≤ n %(leq def2 Nat)%
• ¬(p ≤ 0 ) %(leq def3 Nat)%

end

The specification Nat makes the properties of the predicate ≤more obvious:
The axiom leq def2 Nat of the specification Nat also holds in the specifica-
tion Nat WithStructFreeExt, but due to the structured free extension
it is enough to specify this property by the axiom leq def free2 Nat. The
same holds for axiom leq def3 Nat, which again is not needed in the speci-
fication Nat WithStructFreeExt due to the free construct.

Use a free type instead of a structured free specifications
if no axioms are present.

Example
spec GenerateNat WithStructFreeExt =

free {type Nat ::= 0 | suc(pre :?Nat) }
end

spec GenerateNat =
free type Nat ::= 0 | suc(pre :?Nat)

end

The curly brackets in GenerateNat WithStructFreeExt can be omit-
ted without any effect on the semantics of the sorts Nat and Pos or on the
semantics of the operations 0, suc and pre. Thus we prefer the specification
GenerateNat.

A structured free datatype specification with axioms
can be replaced by a generated type,

with equality characterized by observers.

Example
spec GenerateFiniteSet WithStructFreeExt [sort Elem] =
free

{ type FinSet [Elem] ::= {}
| { }(Elem)
| ∪ (FinSet [Elem];FinSet [Elem])
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op ∪ : FinSet [Elem]× FinSet [Elem] → FinSet [Elem],
assoc, comm, idem, unit {}

}
end

spec GenerateFiniteSet WithoutStructFreeExt [sort Elem] =
generated type FinSet [Elem] ::= {}

| { }(Elem)
| ∪ (FinSet [Elem];FinSet [Elem])

pred elemOf : Elem × FinSet [Elem]
∀x , y : Elem; s, s1 , s2 : FinSet [Elem]
• ¬ x elemOf {} %(elemOf empty)%
• x elemOf {y} ⇔ x = y %(elemOf singleton)%
• x elemOf (s1 ∪ s2 ) ⇔

x elemOf s1 ∨ x elemOf s2 %(elemOf union)%
• s1 = s2 ⇔

∀u : Elem • u elemOf s1 ⇔ u elemOf s2 %(extensionality)%
end

The effect of the free extension can be obtained by using a generated type
and characterize equality on this type using an observer. In this example,
the observer is elemOf , for bags, one would use a counting operation, for
lists an indexing operation.

The effect of the free extension can be obtained by using a generated type
and characterize equality on this type using an observer. In this example,
the observer is elemOf , for bags, one would use a counting operation, for
lists an indexing operation.

A structured free datatype specification with axioms sometimes can be
replaced by a generated type, with equality specified directly.

Example
spec GenerateRat WithStuctFreeExt =

Int
then

free
{

type Rat ::= / (nom : Int ; denom : Pos)
∀i , j : Int ; p, q : Pos
• i/p = j/q ⇔ i ∗ q = j ∗ p %(equality Rat)%

}
end

spec GenerateRat WithoutStuctFreeExt =
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Int
then

generated type Rat ::= / (nom : Int ; denom : Pos)
∀i , j : Int ; p, q : Pos
• i/p = j/q ⇔ i ∗ q = j ∗ p %(equality Rat)%

end

In this case, we can avoid structured free extensions by directly specifying
the equality on generated type, i.e. we even do not need auxiliary observers.

Discussion: The main reasons for these guidelines are:

• The semantics of structured free extensions is complex, i.e. specifica-
tions without structured free extensions are easier to understand.

• Theorem proving supported for structured free extensions can be ex-
pected only for basic specifications in Horn clauses form, since in this
case, the semantics can be obtained as a quotient term algebra. For
free extensions within arbitrary first-order logic, we do not know of
theorem proving support (the only idea here seems to be to use a
meta-theoretic specification of the Casl semantics, which is rather
clumsy when used as a proof tool). Moreover, putting a free around
a first-order specification even need not to imply generatedness. The
same holds for structured specifications that are not flattenable to
basic specifications (i.e. those containing a hide, free or local).

• However, even in the Horn clause case, theorem proving supported
for structured free extensions is rather weak. Of course, it is easy
to exploit the inductive properties, but this can also be done when
using generated types. The difficult problem is to exploit what dis-
tingishes free types from generated types: the negative consequence,
i.e. inequalites. Structured free extensions need to be translated to
a second-order specification of the quotient term algebra. Negative
consequences can be then obtained only by explicitly constructing a
congruence satisfying the axioms which does not include the equality
that shall be disproved. An alternative way is to prove confluence and
then compare normal forms — however, this is not always applicable
(in particular not for proving refinements of free specifications into
other ones) and also rather sophisticated, in particular when it shall
be integrated with other proof techniques. In contrast, an explicit
specification of equality on a generated type (either directly or using
observers) allows a much easier derivation of negative consequences.

• Only for inductively specified predicates, there may be no alternative
to the use of a structured free extension, cf. the first guideline above.
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